MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae.

نویسندگان

  • Eva R Hoffmann
  • Emma Eriksson
  • Benjamin J Herbert
  • Rhona H Borts
چکیده

Double-strand breaks (DSBs) initiate meiotic recombination. The DSB repair model predicts that both genetic markers spanning the DSB should be included in heteroduplex DNA and be detectable as non-Mendelian segregations (NMS). In experiments testing this, a significant fraction of events do not conform to this prediction, as only one of the markers displays NMS (one-sided events). Two explanations have been proposed to account for the discrepancies between the predictions and experimental observations. One suggests that two-sided events are the norm but are "hidden" as heteroduplex repair frequently restores the parental configuration of one of the markers. Another explanation posits that one-sided events reflect events in which heteroduplex is formed predominantly on only one side of the DSB. In the absence of heteroduplex repair, the first model predicts that two-sided events would be revealed at the expense of one-sided events, while the second predicts no effect on the distribution of events when heteroduplex repair is lost. We tested these predictions by deleting the DNA mismatch repair genes MSH2 or MLH1 and analyzing the proportion of two-sided events. Unexpectedly, the results do not match the predictions of either model. In both mlh1Delta and msh2Delta, the proportion of two-sided events is significantly decreased relative to wild type. These observations can be explained in one of two ways. Either Msh2p/Mlh1p-independent mispair removal leads to restoration of one of the markers flanking the DSB site or Msh2p/Mlh1p actively promote two-sided events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break.

In the yeast Saccharomyces cerevisiae, the binding of the Rap1 protein to a site located between the 5' end of the HIS4 gene and the 3' end of BIK1 stimulates meiotic recombination at both flanking loci. By using strains that contain mutations located in HIS4 and BIK1, we found that most recombination events stimulated by the binding of Rap1 involve HIS4 or BIK1, rather than bidirectional event...

متن کامل

Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae.

The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. ...

متن کامل

Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.

When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. ...

متن کامل

A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae.

Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerev...

متن کامل

The chromosome bias of misincorporations during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae.

Recombinational repair of a site-specific, double-strand DNA break (DSB) results in increased reversion frequency for nearby mutations. Although some models for DSB repair predict that newly synthesized DNA will be inherited equally by both the originally broken chromosome and the chromosome that served as a template, the DNA synthesis errors are almost exclusively found on the chromosome that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 169 3  شماره 

صفحات  -

تاریخ انتشار 2005